
1902.] MACKENZIE—EQUATIONS OFHEAT PROPAGATION. 181

ON SOMEEQUATIONSPERTAINING TO THE PROPA-
GATION OF HEAT IN AN INFINITE MEDIUM.

BY A. STANLEYMACKENZIE.

(Plates XXIII-XXVIII.)

( Read April ^, igo2. )

We may attack a problem in the theory of the conduction of

heat in two ways \ we may make use of a Fourier's series or inte-

gral, or, since the general differential equation is a partial linear

one, we may build up the required solution out of known solutions

for simpler cases. The former way is usually much the more

expeditious if the proper ''trick " can be hit upon, but the method

is a purely artificial one, throwing no light on the process

involved. The student or reader sees at once that this method pro-

duces the required result and that a limited number of very similar

problems might be treated in the same way, but he is apt to feel

instinctively at first that the mathematical tool he has employed is

one of which he has only a superficial knowledge and that will fail

him when he gets out of a certain set of problems ; he wonders what

a Fourier's integral means and why it has a special value in such

problems. The trouble here, as in many other departments of

physics, is that the physical interpretation of mathematical opera-

tions is usually avoided. There can be but one good reason for

this, since all must admit the desirability of such interpretations,

that it is at times exceedingly difficult, if not impossible, to give

the inherent physical meaning of a mathematical operation. Much

more, however, might be done than is done, and there is perhaps

no branch of mathematical physics more suited to the purpose of

introducing to those just beginning such studies the meanings and

the limitations of mathematical operations than heat conduction.

The second method of treating heat conduction problems, by

building up solutions from known solutions for other cases, is full of

suggestiveness, and brings into view the meaning of many of the

mathematical processes employed in any treatment of the conduc-

tion of heat, and the relationships of the equations involved. An
attempt is made in the following pages to point out the necessity

for effort along the lines indicated above, and among other things

to give careful drawings of some of the more important curves of

temperature and current.
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In any heat conduction problem we have ordinarily three sets of

equations, the general differential equation, the initial conditions,

and the surface conditions. For the general purposes of this

paper by taking the medium infinite we can get rid of the surface

conditions without limiting the generality of the methods. Suppose

we wish to study the case of a body of any shape or size maintained

at any temperature in an infinite homogeneous medium of the same

material as the body itself but initially at a uniform low tempera-

ture (which for convenience we take as the zero of temperature),

or of the same body at a given initial temperature put into the

medium and left to cool, we could find their solutions by an

ordinary summation if we knew those for the corresponding prob-

lems in the case of an infinitesimally small particle. Wemight

begin by assuming as Kelvin does {Math, and Fhys. Papers, Vol.

ii, p. 44), the solution for the case of a quantity of heat, Q, sud-

denly generated at a point r = at time / = ; but it will be

better to see if it can be derived.

Wehave here to deal with the case of a symmetrical distribution

of temperature about a point. The form of the general differential

equation for this case is

l^^Z=z^ 5F 52^
(I)

k dl r dr dr^

where k = ^r^, J^ being the specific conductivity, C the specific

heat, and D the density of the medium. This equation can be

put in the more symmetrical form

1 ^AZ^ —^'(^'^'')
(2)

This is of exactly the same form as that for the case of the

*' linear flow of heat " of Fourier, that is, of flow in one dimen-

sion only, namely,

J_
5 F _ d'^V

(3)

The distribution of Vr with reference to r for the case of sym-

metry about a point is the same as the distribution of V with

reference to x for the case of symmetry about an infinite plane

perpendicular to the axis of x. This fact will be of assistance in

obtaining and translating results. The ordinary way of treating
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any problem of spherical symmetry is to get the simplest kind of a

solution of (1) or (2) and build up from that solution to the

required one. There is of course an infinite number of solutions

of these equations and a great many simple ones, but we can at

once find one by trying Vr =^ e . This gives /5 = ko\ and
ar kd-t —ka-t

hence Vr =^ e e . Changing a to ia we get Vr = e

(cos ar + / sin ar), and so a solution is

Vr=^e cos ar, (4)

where a is any constant. This equation represents a periodic dis-

tribution of Vr along a radius vector dying out with the time ; lor

the case of the infinite plane this would be actually the curve of

distribution of temperature along x. It is seen that the values of

Fin (4) possess maxima and minima; the temperatures are zero at

distances given by ^ = (2/z + 1) -^ at all times. There is a hot

central sphere of radius ^-, surrounded by alternate hot and cold

shells of common thickness —, the maximum numerical tempera-

ture in each falling as we go away from the centre. Calling the

thickness of the shells d, we have a = ^ j so that the constant a is

inversely proportional to the thickness of the shells and deter-

mines it. The central point begins by being, and remains,

infinitely hot ; the hot and cold layers conduct heat to each other

and gradually die down in temperature. At a great distance from

the origin we should have practically the case of a medium made

up of alternate hot and cold infinite plates of the same numerical

temperature and the same thickness left to cool ; and such a prob-

lem could be treated from a consideration of (4).

This case is far from the problem we started out to discuss. We
can, however, get new solutions from the simple one above, and

the common method is now to say that the following is a solution

of (2),

e cos ar da, (5)

and then translate this equation as we have just translated (4) ; but
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instead of doing so we ought rather to be able to say that this opera-

tion means such and such and foretell the distribution of tempera-

ture it will give. This illustrates what was meant above when

saying that we ought if possible to give the physical interpretations

of mathematical processes. What is the meaning of the operation

involved in (5)? Perhaps some light can be had on it from the

following consideration : We are to take a series of distributions

of temperature like that given by (4) and described above, where

the constant a (determining the thickness of the shells) has the

successive values, 0, da, ^da, a, and superpose them on the

medium after first reducing every temperature by multiplying it by

da. Weare then to take da indefinitely smaller and smaller, and

finally to make a indefinitely greater and greater. We have thus

the difficulty of a double limit entering, and if we wish to seek the

initial condition it becomes a triple limit. This is sufficient to

prevent any rash prediction in this problem as to the exact nature

of the solution to be obtained ; and this case serves as an excellent

example of the difficulties to be overcome in any such efforts at

physical interpretation. Before the limit is reached the state of

temperatures is given by

p —kt{daY- —Akt{da)"- -I

Vr = d(j\ \ -\- e cos rda + e cos 'irda + etc.

The limiting value of this series, which is equation (5), is not very

evident without considerable study, but on account of the dying-

out factor in each term the series is convergent, and the more

rapidly convergent the greater the value of t, and its value could

be found for any given / and da. Another way of finding this

value at any time and distance required is to take an axis along

which a's are measured and draw the logarithmic curve e and

the curve cos ra, then form the curve whose ordinate at each

point is the product of the ordinates of these two curves at the

point, and the area between this new curve and the axis gives the

numerical value of Vr. Since this area is formed of pieces alter-

nately above and below the axis of a and of decreasing numerical

value, we see that Vr is always of the same sign and that, for any

finite value of ;-, it begins by increasing in value and finally falls

off to zero, and by inference that it is zero at time / = ; but

that at the origin it has initially a value greater than zero. The



1902.] MACKENZIE—EQUATIONS OF HEAT PEOPAGATION. 185

operation (5) therefore promises at least another simple solution

and one much nearer the desired one. Noting that

^'^—ko.'^t /»^ —koT-tJ-r^—kol-t /»^ —koT-t

e cos ar ^a = 2 I e COS ar da, and that

+ »3 +00

J—kaH /» —{kto:-—ira)

e sin ar da = 0, we get \ e da —
—00 —cc

r'^ ^ ^'
f -r ir \1

e

and (5) becomes

Vr = ^ e~^

,

(6)
Vkt

where A is an arbitrary constant. This equation says that Vr is

initially indeterminate (evidently infinite, from physical considera-

tions) at the centre and zero elsewhere ; as time goes on the value

of Vr falls off indefinitely at the centre, rises to a maximum at all

other points and then falls off indefinitely also. Now these are

exactly the conditions we want for V itself for the case of an

infinitely hot point cooling in an infinite medium initially of zero

temperature. If we had been studying (3) we would have found

the same equation as (6), with x for r and Ffor Vr, for an infinitely

hot plane cooling in a medium initially zero. The form of the

curves for Fr given by (6) is exhibited on Plates XXIII and XXIV ;

with values of r as abscissae curves A^ to A^ are for values of the

time ^, i
, ^^ and ^^ respectively j with values of Ut as abscissae

curves B"" to B'^ are for values of the distance 0, i, \, | and 1

respectively.

We have taken the form (2) of the differential equation in

preference to (1) on account of its symmetry and because we are

solving the case of the infinite plane at the same time; but it

possesses another important advantage. Since either form of the

equation is a linear partial one we can add any number of solutions

for a new solution ; the question arises, therefore, whether F being

a solution -|^and / Vdr are solutions, and what are their physical
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meanings. Without thinking of the special form of the differential

equation, we can find the meaning of -_~ as follows : Let a solution,

F, be/(r,t); then another, F^, is -^/(r,/), where Ar is a small

constant; and another, F^, is —̂/(^O- Superpose on the medium

these two states of temperature, Fi and F^, after first displacing F^

bodily to the positive side of the origin by an amount Ar. When
Ar is indefinitely decreased the limiting state of temperature is that

represented by -^, or —1—. That is, -^ represents a heating due

to a kind of doublet. Wemust next find out whether such a state

of temperature as that represented by-^ is a solution of (1). We
d V

saw that -y- was a limiting case, and hence it is not a solution in

the limit (except by some unusual accident) unless it is so just

before the limit is reached. While Ar is still finite, but as small as

we please, the superposed heatings do not satisfy the same differen-

tial equation; for F^ satisfies the equation
-j^ ^^^ = j ^^p-^

\ , while F, satisfies the equation -r-^^ —-^ = —̂^^ —- -{-

-, and on account of the variable coefficient these are not
5/-2

d V
the same equation. Hence -j- is not a solution of (1), and is only a

solution of an equation in Fwhen that equation has constant coeffi-

cients, that is, coefficients not containing r. Equation (2) is of that

kind, and hence knowing a solution of it, Fr, we can say that -~
is also a solution. Call this new solution F^r, then F^ is a solution

of (1). Since ^^^= kH- r^-, and since \ —̂is a solution of
^ ^ dr dt

^

r dr

(1), we have h .- a solution of (1) ; this is what we have just

d V
called F^. Now F satisfies (1), but we have just seen that -^

V
does not, and it can easily be seen that doesnot in general; so we

have the interesting fact that the solution F^ is the sum of two func-

tions of K (itself a solution) neither of which is a solution. We
can at least give a physical interpretation to the method of finding
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a solution of (1) represented by the mathematical operation V--'

where Fr is a solution of (2) and F itself a solution of (1); we
have but to add to the doublet of this V as defined above a heating

at each point ;-, which is F divided by the value of r at the

point.

The meaning of ( F dr, where F is a solution of the differential

equation, is now plain. It simply means finding a new function of

r and /, F^, whose doublet is the solution F. That is, -^ = F, and
or '

/^i = (F dr. This is subject to the same limitations as before,

that the differential equation for Fmust have its coefficients inde-

pendent of r, in order that F^ may be a solution of the equation.

Similarly for equation (2); we have a solution, Fr, to find the

meaning of the new solution, FV, which we get on performing

the integration J v r dr. Since -^^

—

' = Fr, or ——- =z F, we

are but finding the distribution of temperature, F^, whose doublet

added to the heating —gives the distribution of temperature,

F, which we started with.

We thus see that (2) has the great advantage over (1) that when
we find a solution of the former we can differentiate and integrate

it with regard to r for new solutions, but we cannot do so with the

latter.

dV r
The meaning of -j- and of

J Fdt as solutions of (1) are of the

same general nature as the similar expressions with r, and are quite

evident ; we now superpose one heating, —/(^/) on another,

—- /ir,/"), after a small interval of time J/, which we make

smaller and smaller indefinitely. Wemight call this a //>;/<? doublet

and the former a space doublet. Both ^ and J Fdt are solutions

of (1) because the coefficients do not contain t. The same remarks

apply to (2) as regards Fr, with the explanations of the former

paragraph added. Here equation (2) possesses no advantage

over (1).

The meaning of a Fourier's integral may now be given. A
solution of (3) for the flow of heat in one dimension is evidently
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—ka'^t

V= e cos /5(a

—

x), where a and /5 are arbitrary constants,

—ka^t —ka-t

for it is made up of V= Ae cos ax and F= Be sin ax^

both of which are solutions of (3) as shown above. This equation

denotes a distribution of temperatures which has maxima and

minima values, the latter being at certain fixed points given by the

equation x = a —(2n -\- 1) -^. In general it is very similar to

the distribution represented by (4) already studied. V^ = V (f{a)

is also a solution, where the temperatures are as before except that

they are increased by multiplying every one by ^(a), an arbitrary

constant function of a. Another solution is got, as described

before, by superposing all the heatings formed on reducing the

temperatures in V^ by multiplying each by the very small quantity

da, and giving a all values from —oo to + °^> ^^^ then taking the

limiting case where da tends to zero. Call this new solution V^

;

then v^ —J ^ cos /5(a

—

x)<p{a)da. Repeat this last operation

with regard to /5; that is, take the distribution of temperatures

represented by V^ and reduce the numerical value of each by

multiplying by ^/5, then superpose all such heatings formed by

giving /5 every value from to oo, and finally take the limiting case

where d^ tends to zero. Call this new solution V^ ; then

//* —Ka-t

di3 J e cos iS(a

—

x')(p{fi)da. Still another solution

—cc

is got by reducing every temperature in ^ in the ratio of - to 1.

cc 4- cc

if f
~^'^"^

Call this solution F^; then ^ = -J d^ J e cos /5(a

—

x)<p{a)da;
^ —oo

it has the special importance and peculiarity, as was first shown by

Fourier, that at time zero the distribution of temperature it

represents is the same function of x, (fi^x), that we took originally

of a. Similarly every Fourier integral may be interpreted.

Returning now to equation (6) and the curves drawn for it, we

can find new solutions by addition ; at each point r let us add the

temperature for that point and all other points farther from the

centre, even to infinity, but first reduced in absolute value by

multiplying each by the small quantity dr, which we make ulti-

mately tend to zero. Wehave but to add on Plate XXIV for any
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abscissa (time) the ordinates of all possible curves such as B^^ ^%
etc., below any given one, after reducing them as described. For

/ = and r = we would get (co -|- -(- + etc.) dr, which as

^r diminishes indefinitely gives us some finite value; for other

values of r we would get (0 -f- -f- -f etc.) dr, which is zero.

From the way the curves tend to become parallel it is suggested,

and by trial we find, that for r = and any finite value of the

time not zero the sum of all the ordinates would be constant. We
have then the promise of another simple solution, and can foretell

its type somewhat, of the form

Vr CA^e ^''dr=^B C e d?, (7)

2}/ kt

where B is an arbitrary constant. On studying this equation we
find that Vr at the origin has initially the value B, and maintains

that value ; at all other points it is initially zero and rises asym-

ptotically with time toward the value B. F itself would be' always

infinite at the origin and initially zero elsewhere. For the case

of linear flow equation (7) represents an infinite plane kept at

temperature B in an infinite medium initially zero in temperature.

We can get the solution for an infinitely hot point put into an

infinite medium initially zero and left to cool as follows : At time

zero apply to the medium the state of temperatures represented by

(7) with every temperature increased by multiplying it by the large

quantity—-; after time J/ apply also the state of temperatures

represented by (7) with sign changed and increased numerically as

before ] finally make At tend to zero. We have seen above that

this is equivalent to performing the mathematical operation of

differentiation of (7) with regard to /, that is, taking the time

doublet of Vr. The reason that this solution is the one required is

that the superposition of the two heatings gives Vr a large value

at the origin at first and everywhere else a zero value, and then

instantaneously makes Vr zero at the origin ; that is, at the origin

Fis initially infinite in temperature and then falls off indefinitely,

while all other points begin at zero and rise gradually. These were

the conditions we wanted. Hence we have the solution
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-^[^-/'"*]-SVr

2\/ kt

\kt
e ,..(8)

and

E 4^^

V= ^e , (9)
;-

where £ is an arbitrary constant.

Further light can be thrown on this problem by arriving at

equation (8) by other methods. Remembering that equation (6)

gave Fr initially infinite at the centre and zero elsewhere, and

falling in value at the centre and gradually rising to a maximum
elsewhere, we see that by taking the space doublet of this Fr we

get Fr 2it the origin first infinite and then zero; that is, Fat the

origin is at first infinite and then gradually falls off, and is initially

zero elsewhere and rises with time. These are the conditions

required. Hence the solution is

d r A i^i-] Er ^kt

^' ~ ^r \_VJt ' J {kty

Or we can look at it in this way : We saw that Fr in (6) had

exactly the set of values we want F to have in the problem pro-

posed, and the form of the right-hand member of (6), containing

r-
~ \ki

as it does r in the factor e only, suggests at once that we can

get the desired value of Fby a simple differentiation with regard

to r. This is what we have just done with a good physical reason

for the operation.

Or another method. We saw that equation (G) for the case of

flow in one direction only was that of an infinitely hot plane cool-

ing in an infinite medium initially zero in temperature, and to get

the solution for the similar problem in three dimensions we have

but to multiply that solution by two similar ones with y and z

substituted for x. This gives

'^kt Akt \kt ^ Akt

e e ^ --—5 e (11)
{_ktf {.ktY-
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The rate of cooling is given by the equation

Each point of the mass not the centre begins by being zero in

temperature, then rises to a maximum after a time / ^= -^ , and

after this falls off indefinitely toward zero. The forms of the

curves given by (9) are exhibited on Plates XXVand XXVI. With
values of r as abscissae curves I^ to IV' are for values of the time

jTw, -Q^, -j^, and —J respectively ; with values of 4/'/ as abscissae

curves I' to 5^ are for values of the distance 0, i,
1, |- and 2

respectively.

The meaning of the constant £ is determined by finding the

amount of heat supplied initially to the hot point. Wehave

(2 = r r r CC>Vdx dy dz = ^^^^^ C e ^^\-\ir=-^ CDfJ. . (12)

If we take as our unit of heat that required to raise the niass in a

unit of volume of the substance 1°, the total quantity of heat, (t,

in these units is

ff = 8^-' (13)

Wecould also get the total heat by taking the integral

C—K^ i-r'dt. Weget from (12) and (13) our equation (11)

in the form

Q
4^< ^ ^kt

y —. ^ ^ ^ £ C14)
^CDi^-Kktf. 8(-'^0^

(See Kelvin's Papers, Vol. II, p. 44.)

Wecannot build up by summation the solution for the case of a

body of finite dimensions from the above solution for a mathemati-

cal point. We wish to pass to a case which has a physical signifi-

cance, namely, a finitely hot particle left to cool in an infinite
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medium of temperature initially zero. We can get a close

approximation to this problem by putting the same quantity of

heat, ffi into a particle of volume Av which we put into the math-

ematical point, and assuming that the state of temperature produced

in the surrounding medium is the same as that due to the infinitely

hot point and is given accordingly by (14), This equation will

represent the real state the better the longer the time which has

elapsed, in accordance with the fact emphasized by Fourier that

the initial heating is of less and less importance as the time is pro-

longed. The closeness of the approximation for any given time

and distance will be brought out later.

Let the quantity of heat supplied raise the volume Av to the

temperature V^; then Q = CDV.Av, or a r= F,Jv; and (14)

becomes

r-

KAv ^^V= '—J e (15)

If the volume Av is in the form of a sphere of radius R, (15)

becomes

F,/?3
\kt

V=^^^^-^ e , (16)
6i/7r (i/)i

and it is really for this form of the equation, with R taken as the

unit of length, that the curves referred to on Plates XXVand XXVI
were drawn. They are, as said, approximations only to the true

curves. The latter may be found by the aid of a Fourier's integral.

Weknow that the solution of (2) subject to the condition V=^f{r)

when / = is

Vr = ^ [J (^ + 21/17 r)/(/' -f Wk^r) e dy —

•i}/'kt

C» 2—1

J (-r + 2i/I/r)A-^+ V^r)^ \/rJ--(i^)

2\^ kt

Giving f{f) the value V^ from r = to r =^ R, and the value

from r =^ R io r =^ ^
y {11) takes the form
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r—R
2\/ki

This then is the exact equation for a sphere of any size of initial

temperature Fg put into an infinite medium of the same material as

the sphere of initial temperature zero and left to cool there. The
forms of the curves given by this equation are exhibited on Plates

XXV and XXVI, along with those of the approximate equation

(16). Curves I to IV correspond to V to IV^ and curves 1 to 5

correspond to 1* to 5\

Wecan get an approximate form from equation (18) by expand-

ing it in": erms of J? ; we find

Tkir- 4^-6

6i/^ W^ L 40 i^ J
(19)

The first term of this is the same as equation (16), found otherwise.

Equation (19) gives us a second approximation, and the second

term within the bracket will enable us to determine the closeness of

(16) as an approximation. In a similar problem, Fourier (Free.

man's translation, p. 380) gives a limit to the time when the

approximation may be used, but he does not give any means of

telling how great the error is in general, and it was for the purpose

of bringing this out distinctly that equation (19) and the curves on

Plates XXVand XXVI were produced. From Plate XXVwe see that

the approximate curves are at first steeper and afterward flatter than

the exact curves ; they make the temperatures too high for points

nearer the origin than a certain distance, and too low for points

farther away. Indeed curves I and I^ are very little alike for any value

of/'. As the value of the time for which the curve is drawn is taken

greater and greater the curves approach each other more and more

nearly, even for points less distant than unity (which are inside the

little sphere), for which we might have expected little agreement.

This makes evident the fact to which Fourier calls attention at the

place just cited ; one is very apt to assume that the curves would

approach each other more and more as r is taken greater and

greater, no matter what the value of /; bat just the reverse is true,

PROG. AMER. PHILOS. SOC. XLI. 169. M. PRINTED JULY 28, 1902.
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the curves approach each other more and more for greater and

greater values of the time, no matter what the distance. This is

seen more distinctly from an examination of Plate XXVI. There it

will be seen also that the approximate curves are slower in reaching

their maximum values, as well as that they have different maxima.

For distances less than unity the approximate curves start at go
,

while the exact curves start at F= F^; for the distance unity the

exact curve starts abruptly at-^, while the approximate curve starts

at then gradually rises and has a maximum value less than

-^. For distances greater than unity both curves start at the origin.

From an inspection of the second term of (19) we can foretell

the approximate accuracy of (16). Taking 7? as the unit of length,

if /('/< 15 the error in the value of —̂̂ will be everywhere greater

than 1% except in the immediate neighborhood o{r=i/^kf, at which

point the error is practically zero. For instance, for k^ = ^ (curves

IV and IV^) the approximate curve is 33% too high at r = 0, 22 fc

21 r = 1, correct at about 1.8, and 38% too low at 3. If kt =^ 15,

the error is not more than 1% from r = to r = 13.4. If ^/ ==: 25

the error is not more than 1% from r = to r = ?0. In general,

for any value of kt the error is not more than \% from r = to

r = yfSkt + ^{kt)\ and from r = to r= |/6^ the error

15
*

decreases gradually from -j7% to zero, and after that increases

again. If we want results accurate to .01%, kt must be at least

1500, and in general for any value of ki greater than this the error

is not more than .01% from r =-- to r = y(Skt -J- Yiu ('^0^ ^^^

from r = to r = |/6/C'/ the error decreases gradually from -rrfo

to zero, and after that increases again.

From equation (15) we can build up by summation the equation

for the case of a body of any shape or size initially at Vq cooling in

an infinite medium initially zero. In order to bring out a very

interesting difference between summation and integration we shall

apply equation (15) to the case of an infinite space, one-half of

which is initially at V^ and the other half at zero, the two parts

being separated by an infinite plane surface. Weshall first have to

find the solution for a plane lamina. Take the central plane of the

lamina as the plane of ^'2,''and the origin where a perpendicular
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from the point P, at which we want to know the temperature,

meets this plane. Call the length of this perpendicular x. Break up

the lamina into concentric rings of radius p about this origin, and

let the distance of every point in one of such rings from the point

P\>^ r and the thickness of the lamina Ax\ then we have

8(

_ - V- + p- f -_

—̂, I e ^r.p. Ax. dp = —5—
. g /30)

From the symmetry of the problem this is evidently a case of linear

flow, and the solution must satisfy equation (3). Knowing this

solution (we can get it otherwise), the solution for three dimensions

given in (15) can be deduced ; we have but to multiply the value of
/>'

-T7 for the case of one dimension by two similar expressions with

y and z respectively substituted for x.

The corresponding electrical problem is that of an infinite cable

with no lateral loss by leakage touched for an instant to a condenser

of potential V^. If there is lateral leakage equation (20) is still

the solution of the electrical problem; Vis then not the potential,

but the potential can be derived easily from it, as is well known.

If Q or (7, according to the unit of heat used, is the amount of

heat required to raise the mass of a section of the plate of unit

area by V^ degrees, then Q = CDVqJx, or c- = V^Ax, and equa-

tion (20) becomes

Q -Ul ^ --Ikt
V = —-^

^ e =
^ e (21)

Of course this equation is of only the same grade of approximation

as (15). It will be the more nearly exact the smaller Ax and, since

the product of V^ and Ax measures the heat in a section of unit

area and is to remain constant, the greater V^. In the limit we

should have the solution for an infinitely hot plane. The form of

this solution we have already found ; it is from (G) and the remarks

following it

A ikt

,-=.e (22)

Calling Q the total heat associated initially with a unit of area of
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the plate, we find (2 = 2 ( CDVdx= lACBx/r.; and this value

of A reduces (22) to the form (21). Hence the general form of

equation (21), which is approximate for a plate of actual thickness

Ax, is exact for the infinitely hot plane. We shall revert to this

important fact later.

If we want the exact equation for the plate of thickness Ax we

can get it by the use of a Fourier integral. Making the obvious

changes in (17) to suit it to the case of linear flow, and giving/(:x:)

the value ^o from x =^ -^to^==-^ and the value for all

other values of x, we find

^=77f e dy (23)

2i/ kt

Putting this in an approximate form, we have

2{'Kkt)

V,^x ^
^^^

p^ ,

kt - (Ax]
(24)

the first term of which is equation (20). The forms of the curves for

(20) are exhibited on Plates XXIII and XXIV. With values of x as

abscissae curves A'^ to A* are for values of the time -^, -^, -jr and

-^ respectively ; with values of 4/CV as abscissa curves B^ to B'^ are

for values of the distance 0, ^, ^, | and 1 respectively. The second

term of (24) enables us to tell approximately the degree of closeness

of (20) to the exact equation (23). Taking Jx as the unit of

25
length, if kt<.--^ the error will be everywhere greater than 1 %

except in the neighborhood of x --= y^-lkt where it is practically

25
zero. If kt = -^^ the error is not more than 1% from :x: = to

X =z 2.9, being Ifo too high at x = 0, zero at jc = 2, and ifo too

low Sit X ^= 2.9. If /&/ = 25 the error is ^3-% too high at :v = 0,

zero at 7, and 1% too low at 26. This is then a nearer approxima-

tion than the one discussed for the case of a hot particle, as was to
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be expected. In general, for any value of kt the error is not more

than \% from ^ = to x = y^Uf -f- ^{kty, and for any value of kt

greater than ^-^ the error is not more than M%from jc = to

2^V -f 23^(^0' y from :\: = to a,- = V 2k/ the error decreases

25
gradually from t^^^ to zero, and after that increases again.

The correspondingly approximate equation for the current or

flow of heat in this case is

J = —A ^= —̂= ^e = -^^ -3 e ....(25)

The forms of these curves are given on Plates XXVII and XXVIII.

With values of a: as abscissae curves C^ and C/, C^ and Q^, and Q^

are for values of the time zrwr, -^ and ^-t- respectively ; with values

of 4^/ as abscissae curves Z>^ and Z?/, D" and Z>i^, and Z>i' are for

value of the distance i, J and 1 respectively.

The exact equation for the flow, found from (23), is

r^rz I— 4:kt Akt —

i

/^-ALlF, _, n (26)

2(:7/^/)^L J

the curves for which have not been drawn.

By adding up the effects of an infinite number of such plates we

can get the temperature due to one-half of space initially at a uniform

temperature V^ and the other half at zero temperature. Take the

point F, at which the temperature is desired, in the cold half and

at a distance x from the surface of separation, and take the origin

in that surface at the foot of the perpendicular from F. Let one

of the plates making up the other half of the medium be distant I

from the origin. Then the x of equation (20) becomes x -\- ^,

and Ax becomes J| ; hence the temperature at F due to a series of

such plates extending from c =: to 1^ =: oc , as found by inte-

gration, is

00 TT-, -r, —ft2

V /• ^^^ V

2Vkt
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*['-7^J-''"'*] (27)

We could arrive at the solution for this case by using Fourier's

integrals, as we did for equation (23), giving /(^) the value F„

from X = —ooto:!t:==0 and the value zero from ;r = to ^ = oo.

Weget at once equation (2T) again.

This latter method gives the exact solution for the problem and

yet it gives the same result as the former method, from which one

might expect naturally enough an approximate solution, since we

get it by integrating solutions that were approximate. This is the

point to which attention was called in applying our results to this

case ; we have the integration of approximate solutions an exact

solution. The first explanation offered of this unexpected result is

apt to be that the approximation used is the more exact as the dis-

tance .T -(- ^ is the greater ; but we have seen earlier that just the

contrary is true and that at great distances (20) ceases to be

properly called a solution unless the time is taken very great. The

real explanation is simply that the operations of summation and

integration are not always the same, and this is a case in point.

Nothing is commoner in applying mathematics to physics than to

use mathematical processes with laxity and to test the legitimacy of

the application by the results. It is so uncommon to have a sum-

mation made improperly by integration that we lose sight of the

mathematical fact that the operations are not equivalent. We take

similarly the first two terms of a Taylor's series expansion as a

sufficiently close approximation in almost any piece of analysis,

without questioning whether the function under consideration can

be so expanded and without reference to the value of the terms

disregarded ; we take differential coefficients without asking

whether they can have a meaning, etc. The good excuse offered

is that the chances are overwhelmingly in our favor, and that if we

have made a mistake we shall quickly find it out from the results.

Had we actually made a summation in the above problem we should

have got an approximate result, but by integrating we get the limit

toward which the summation tends as ^^ tends towards zero, and it

happens in this case that this is the exact solution. In finding an

area we take a series of strips of area of y^x and however infinites-

imally small dx is, so long as it is something and not zero, the sum
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of such Strips is not the exact area required
; f yt/x is the limit

toward which the sum tends as (/x tends to zero, and we know from

the familiar example of Fourier's series how the value can change

actually in the limit. It happens in the present case that as ^c is

made smaller and smaller, and V^ correspondingly greater and

greater in order to keep cr constant, in the limit —-—̂ is the

exact solution for an infinite plane (see under (21) and (22)). So

in making the integration above, that is, in finding the limit of the

summation, we get necessarily an exact solution because in the limit

each term of the solution is exact. Had we approached the limit

in some other way than in keeping ^ constant we might have got

quite a different result.

The forms of the curves for (27) are shown on Plates XXVII
and XXVIII. Curves £\E^ and £^ are drawn with values of x as

abscissae for values of the time —̂, -jy- and - respectively ; curves

J^\ F"^ and F^ are drawn with values of ikt as abscissae for values

of the distance j, ^, and 1 respectively.

Since the current or flow is got from the temperature by a differ-

entiation with regard to x, and since equation (27) was got from

(20) by an integration with regard to x, it is evident that the

curves for the potential or temperature in (20) are the curves for

currer.t in the present problem.

I=-KZ = ^^.e (28)
dx %{r:ktY

These curves are given on Plates XXIII and XXIV for points to

the right of the origin ; the form for points to the left is obvious,

since the curves are symmetrical about \.\-\q yz plane.

Physical Laboratory, Bryn Mawr College.

April J, I go 2.


